Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet.

نویسندگان

  • Zeng-Jin Yang
  • Bing Wang
  • Herman Kwansa
  • Kerry D Heitmiller
  • Gina Hong
  • Erin L Carter
  • Jessica L Jamrogowicz
  • Abby C Larson
  • Lee J Martin
  • Raymond C Koehler
چکیده

Pharmacologic inactivation or genetic deletion of adenosine A2A receptors protects ischemic neurons in adult animals, but studies in neonatal hypoxia-ischemia (H-I) are inconclusive. The present study in neonatal piglets examined the hypothesis that A2A receptor signaling after reoxygenation from global H-I contributes to injury in highly vulnerable striatal neurons where A2A receptors are enriched. A2A receptor immunoreactivity was detected in striatopallidal neurons. In nonischemic piglets, direct infusion of the selective A2A receptor agonist CGS 21680 through microdialysis probes into putamen increased phosphorylation of N-methyl-D-aspartic acid (NMDA) receptor NR1 subunit and Na(+),K(+)-ATPase selectively at protein kinase A (PKA)-sensitive sites. In ischemic piglets, posttreatment with SCH 58261, a selective A2A receptor antagonist, improved early neurologic recovery and preferentially protected striatopallidal neurons. SCH 58261 selectively inhibited the ischemia-induced phosphorylation of NR1, Na(+),K(+)-ATPase, and cAMP-regulated phosphoprotein 32 KDa (DARPP32) at PKA-sensitive sites at 3 hours of recovery and improved Na(+),K(+)-ATPase activity. SCH 58261 also suppressed ischemia-induced protein nitration and oxidation. Thus, A2A receptor activation during reoxygenation contributes to the loss of a subpopulation of neonatal putamen neurons after H-I. Its toxic signaling may be related to DARPP32-dependent phosphorylation of PKA-sensitive sites on NR1 and Na(+),K(+)-ATPase, thereby augmenting excitotoxicity-induced oxidative stress after reoxygenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

BACKGROUND AND PURPOSE Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. MET...

متن کامل

Effects of adenosine A2a receptor agonist and antagonist on cere-bellar nuclear factor-kBexpression preceded by MDMA toxicity

  Background :Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neu...

متن کامل

Tracking the A2A adenosine receptor

Background The A2A adenosine receptor has become a drug target in the treatment of Parkinson’s disease, psychotic behavior and dementia. In addition, targeted deletion of this receptor in mice leads to hypertension, increased platelet aggregation, male aggressiveness and decreased susceptibility to ischemic brain damage. The potential clinical relevance of this receptor is obvious. The A2A aden...

متن کامل

P138: Are Depression and Anxiety Affected by Adenosine A2A Receptors?

Adenosine acts as neuromodulator in the brain, which its involvement in a wide range of brain processes and diseases has been studied, such as epilepsy, sleep, anxiety, panic disorder, Alzheimer’s disease, Parkinson’s disease and schizophrenia. Adenosine receptors have been detected: A1R, A2AR (A2AR), A2BR, and A3R. A1R and A2R inhibit cAMP production, while A2AR and A2BR stimulate cAMP product...

متن کامل

The Role of Agonist of A2a Adenosine Receptors on Neurotoxicity of Mdma (Ecstasy Pill) on Rat’S Hippocampus

Purpose: MDMA is a synthetic drug that is originated from Amphetamine. It is used by some people. This material induces some chemical changes in serotonergic and dopaminergic neurons in middle brain. Materials and Methods: In this study, we used 49 Rats Sprague-Dawley, 200-250 gr. There were 7 groups and 7 Rats in each group. Rats received MDMA in the first group, in the second group CGS (A2A r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 33 10  شماره 

صفحات  -

تاریخ انتشار 2013